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Abstract 

The shock capturing properties of the axisymmetric Euler 
throughflow equations in design mode (imposed swirl) 
and in analysis mode (imposed flow angle) are examined 
through formulation of the Rankine-Hugoniot relations. 
A new, hybrid mode is constructed that combines proper- 
ties of the two classical modes. The consequences of the 
different shock representation in the several modes are il- 
lustrated for five characteristic operating points covering 
the complete design speed performance curve of a tran- 
sonic axial compressor rotor. Circumferentially averaged 
3D Navier-Stokes solutions serve as a reference. A com- 
prehensive comparison of the throughflow and averaged 
3D flow fields is presented. The analysis mode, due to 
captured shocks, predicts a wrong flow field inside the 
blade passage, yet is reasonably accurate globally. The 
design and hybrid modes, due to identical shock captur- 
ing properties, give near-identical solutions, which are 
in excellent agreement with the pitch-averaged 3D refer- 
ence solutions. 

Notation 
b blockage factor (1 - d/s) 
Cp pressure coefficient 
d tangential blade thickness 
E total energy per unit mass 
/B blade force per unit mass 
fF friction force per unit mass 
H total enthalpy per unit mass 
I unit tensor 
/ rothalpy per unit mass 
M Mach number 
m meridional coordinate 
p pressure 
R radius vector J_ ft 
r radial coordinate 
S surface of volume V 
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s tangential blade spacing 
T temperature 
t time 
V volume 
W relative velocity vector 
x axial coordinate 

ß relative flow angle 
S deviation angle 
I efficiency 
9 tangential coordinate 
II pressure ratio 
p density 
if> loss coefficient 
U vector of angular velocity 

Subscripts 
eff effective 
is isentropic 
ref reference dynamic quantity 
rel relative 
rot rotary 
t total quantity 
LE leading edge 
TE trailing edge 

1    Introduction 

In recent years, several authors have proposed through- 
flow models based on the Euler equations, see for in- 
stance Spurr (1980), Dawes (1992), Nigmatullin and 
Ivanov (1994), Boure and Gillant (1995), Yao and Hirsch 
(1995), Darme et al. (1997), Baralon et al. (1997), and 
results reported by Vuillez and Petot (1994) and Broich- 
hausen (1994). When solving the Euler equations, the 
existing, well-developed solution techniques can be ap- 
plied, the massflow is a result of the computation, chok- 
ing of blade rows can be predicted, and shocks can be 
captured. If viscous terms are included, end-wall bound- 
ary layers can be computed directly. The important ques- 
tion, however, of what is the most appropriate through- 
flow representation of supersonic flows and flows with 
shock waves has not been answered satisfactorily yet. An 
attempt is therefore made to remedy this situation. 

In section 3, the Rankine-Hugoniot relations in de- 
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sign mode and in analysis mode are derived, starting from 
the integral formulation of the Euler throughflow equa- 
tions. Isolation of the prescribed streamwise distribution 
of either We or ß as the shock-determining factor leads to 
the construction of a new mode. Because it combines the 
off-design analysis capability of the analysis mode with 
the shock capturing properties of the design mode, this 
mode is termed hybrid. 

In section 4, the practical implications of the differ- 
ent shock capturing properties are discussed. The pitch- 
averaged representation of a normal shock in a straight 
2D blade passage of high stagger angle is compared an- 
alytically with the equivalent flow in the two classical 
throughflow modes, separating the effects of work input 
(turning) and losses. 

Finally, in section 5 the three throughflow modes 
are put to the test with the NASA Rotor 67 transonic 
compressor rotor by comparison with pitch-averaged 3D 
Navier-Stokes solutions for five characteristic design 
speed operating points ranging from nearly stalled to 
fully choked. 

Conclusions are drawn in section 6 and guidelines 
formulated for the throughflow calculation of relative su- 
personic flow with shock capturing Euler models, specif- 
ically how to achieve a realistic representation of the 
pitch-averaged 3D flow field and the correct amount of 
work input and shock losses. 

2    The Euler Throughflow Model 

The axisymmetric throughflow model is integrated in the 
3D Navier-Stokes code Euranus (Hirsch et al.; 1991) and 
solves the following conservative formulation of the Eu- 
ler equations: 

J dt 

P 
pW 
PE 

dV + If 
bpW 

b{pW ® W + pi) 
bpWI 

■dS = 

/ 

0 

p(Ü2R - 2ft x W) + p(/B + /F) + P 
0 

V6 dV 

(1) 
The presence of the blades is modelled through a dis- 
tributed blade force, /B, to produce the desired turning, 
through a blockage factor, b, that accounts for the re- 
duced area due to blade thickness and a distributed fric- 
tion force, /F, representing the entropy increase due to 
losses. The exact blade geometry is not required and the 
method therefore is suitable for design. In ducts, 6=1 = 
cst and /B = /F = 0. Eq. (1) is formulated in Cartesian 
coordinates and solved in the relative system. The finite 
volume spatial discretization employs either the central 
scheme or upwind TVD schemes, time integration is ex- 
plicit through a Runge-Kutta scheme with implicit resid- 
ual smoothing and multigrid. The mesh consists of a sin- 
gle cell in the tangential direction and does not reflect the 

blade geometry; axisymmetry is expressed through a pe- 
riodic boundary condition. 

The blade force /B is perpendicular to the relative 
velocity vector. Its magnitude is obtained from an addi- 
tional time dependent equation, cf. Sturmayr and Hirsch 
(1999). 

The friction force /F introduces losses in the invis- 
cid flow according to the distributed loss model, Hirsch 
(1989). It acts in the direction opposite to the relative ve- 
locity vector. Its magnitude is proportional to the stream- 
wise derivative of an imposed loss coefficient, dm i>, and 
for the perfect gas its magnitude is given by 

P/F 
Ptrot 

-Prefdm1p (2) 

This formulation ensures that a zero loss coefficient will 
give exactly zero friction force. In the definition 

r(, = 
Pt rot LE — Pt rot 

Pref 
(3) 

pref is a reference dynamic pressure, taken at the leading 
edge (for compressors) or trailing edge (for turbines) on 
each streamwise mesh line, and pt rot is the total pressure 
associated with rothalpy. 

3   Throughflow   Shock   Capturing 
Properties 

3.1 Preliminary Remarks 

For clarity, the discussion is limited to a 2D blade-to- 
blade section, where the friction force and blockage fac- 
tor are supposed to vary smoothly across the blade pas- 
sage. Therefore, they do not enter into the Rankine- 
Hugoniot relations and will not be considered here. 

The 2D Euler equations are reviewed first for refer- 
ence and the associated throughflow equations then an- 
alyzed by imposing axisymmetry and adding the blade 
force in the right-hand side. 

3.2 2D Euler Equations 

The Euler equations in integral form can be written as 

/ 
dt 

p 
pW dV+ I 

s 

pW 
pW ®W + pl •dS = = 0  (4) 

pE pHW 

with the relative velocity vector W = (Wm, We)T- The 
Rankine-Hugoniot relations for stationary discontinuity 
surfaces admitted by system (4) are 

[pW]-l„    =   0 

[W]PW ■ ln + [p]l„      =     0 
[H]    =    0 

(5) 



shock wave    'n 

Figure 1: 2D blade-to-blade shock nomenclature: (a) 
normal shock wave, (b) oblique shock wave, (c) axisym- 
metric shock wave; m = meridional direction, 6 - tangen- 
tial direction. 

with the unit normal vector of the discontinuity surface 
ln = (nm, ng)T. If ln is parallel to the flow direction, 
ln = W11 W\, one has a normal shock, Fig. la, otherwise 
an oblique shock, Fig. lb. A special case of an oblique 
shock is the axisymmetric shock with ln = (1,0)T, Fig. 
lc. This is the only possible shock in the axisymmetric 
flow in ducts. 

3.3    Associated Throughflow Equations 

With the assumptions of subsection 3.1, of all the 
throughflow terms of Eq. (1) only the blade force re- 
mains. Writing the components of the momentum equa- 
tion explicitly, this gives 

/< 

P 
pWm 

pWe 

PE 

dV + 

+ 

PW 
pWmW 
pWeW 
pHW 

dSe = 

■dS + f dS„ 

0 

I Pfßm 
phe 

V 0 

dV      (6) 

The Rankine-Hugoniot relations can either be derived 
from system (6) directly, or the blade force eliminated 
first from the differential form of system (6), leaving only 
one momentum equation. The former way is presented 
here because it corresponds to the numerical formulation. 
Both approaches require the definition of the design and 
analysis problems. The design problem is defined by a 
smooth streamwise distribution of We, thus 

[We. 0 (7) 

Likewise, the analysis problem is defined by a smooth 
streamwise distribution of 

ß = atan-— 
Wm 

(8) 

thus [/?] = 0 and therefore 

[W„] = [Wm]tanß (9) 

In both problems the flow is axisymmetric (de = 0 and 
dSe = 0). The components of the blade force are coupled 
by the orthogonality condition 

f*-w 0 (10) 

The Rankine-Hugoniot relations for stationary dis- 
continuities admitted by system (6) with dSe = 0 are 

[pWm]     =     0 (11) 
pWm[Wm] + \p]    =    FBm (12) 

pWm[We]    =    FB$ (13) 
[H]    =    0 (14) 

Fßm and FBe are the components of an impulsive blade 
force, defined by 

FBe =  lim / pfsedV 

v 

(15) 

where the control volume V encloses the discontinuity, 
and 

p      _   Wei + We2 „ 
FBm - — ———FBe (16) 

Wm\ + Wm2 

The subscripts 1 and 2 designate the left and right limit 
values, for example [Wm] = Wmi — Wm\. Definition 
(16) replaces condition (10), which cannot be applied to 
F because W is undefined at the discontinuity. Equation 
(16) implies an arbitrary but realistic choice on the direc- 
tion of F; it has no influence on the jump relations of the 
design and analysis problems. 

In the case of the design problem, it follows from Eq. 
(13) that FBe = 0 and further with Eq. (16) that FBm = 
0. The resulting set of Rankine-Hugoniot relations is the 
same as that for the 2D Euler equations (5) with 1„ = 
(1,0)T, 

[pWm]    =    0 
pWm[Wm] + \p\    =    0 

[We]    =    0 
[H]    =    0 

The design problem therefore captures axisymmetric 
shocks, which requires Mm > 1. 

In the case of the analysis problem, Eq. (13) with 
We = Wm tan ß becomes 

(17) 

pWm[Wm]t<mß - FBe (18) 

[tan/?] = [WWW™] = 0 by definition so that in Eq. (16) 
{Wei + W„3)/{Wml + Wm2) = We/Wm, yielding 

FBm = -pWm [Wm] tan2 ß (19) 

Inserting FBm in Eq. (12) gives the jump relation for ax- 
ial momentum. The resulting set of Rankine-Hugoniot 
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Figure 2: 2D compressor blade passage with super- 
sonic relative inflow (Mi > 1): (a) near stall, (b) 
choked, (c) axisymmetric shock admitted in design mode 
if Mi cos^j > 1. 1 

relations is the same as that for the 2D Euler equations 
(5) withln = (1, tan/?)T/Vl + tan2 ß = W/\W\, 

[pWm] 
(l + a2)PWm[Wm} + \p} 

[ß] 
[H] 

(20) 

The analysis problem therefore captures normal shocks, 
which requires Mrei > 1. It should be stressed that the 
impulsive force F arises as a result of captured shocks in 
the analysis problem. 

3.4    The Hybrid Mode 
In the preceding section, a distinction has been made be- 
tween the design and analysis problems, defined by Eqs. 
(7) and (9) respectively. Scaling the smooth distributions 
of respectively We or ß to fit the LE value and an imposed 
TE value of that same variable defines the design and 
analysis modes. The shock capturing properties, how- 
ever, are defined solely by the choice of the smoothly dis- 
tributed variable, which may differ from the imposed TE 
variable. Other modes can therefore be constructed by 
combining a smoothly distributed variable with a possi- 
bly different imposed TE variable. We define the hybrid 
mode as that mode which combines the shock capturing 
properties of the design mode with the off-design analysis 
capability of the analysis mode. The imposed TE variable 
ß is converted to the distributed variable Wg according to 

WeTE = I^TElsin^TE (21) 

4   The    Relevance    of    Captured 
Throughflow Shocks 

4.1    General Considerations 

Figure 2 shows selected shocks in the context of a blade- 
to-blade section of a transonic axial compressor rotor. An 

Figure 3: 2D blade-to-blade normal shock at high flow 
angle. 

axisymmetric shock, Fig. 2c, can arise only in axially 
supersonic flow. In most of today's turbomachinery the 
flow is axially subsonic, however. The design and hybrid 
modes then will not capture any shocks. Normal shocks, 
Fig. 2a and shock B in Fig. 2b, can be captured in analysis 
mode. Oblique shocks such as shock A in Fig. 2b cannot 
be captured with either of the two throughflow problems. 

Conceptually, the axisymmetric throughflow solu- 
tion is supposed to represent the pitch-average of the cor- 
responding 3D flow. 3D shocks do not appear as dis- 
continuities in the pitch-average flow unless they are ax- 
isymmetric. As Fig. 2 illustrates, their meridional projec- 
tion may actually cover a substantial fraction of the axial 
chord. The flow variation across this shock zone in the 
pitch-average solution and in the throughflow will now be 
examined analytically for a blade-to-blade normal shock. 

4.2   Pitch-Averaged  Representation 
Blade-to-Blade Normal Shock 

of a 

Figure 3 shows a normal shock at high flow angle, as it 
might occur in a transonic rotor. The ^-coordinate has 
been normalized so that the shock impinges on the pres- 
sure surface of the upper blade at x = 0 and on the suc- 
tion surface of the lower blade at x = 1. Neglecting blade 
thickness variation, camber and shock stability questions, 
the flow upstream and downstream of the normal shock 
is uniform. The tangential average is then composed of 
three regions: a uniform region for x < 0, a smooth tran- 
sition region for 0 < x < 1 and another uniform region 
downstream for x > 1. 

Figure 4 compares the pitch-averaged 2D blade-to- 
blade flow with possible throughflow representations for 
ß = 60° and Mi = 1.4: (i) a design mode solution with 
linear swirl (We —) and loss distributions, (ii) a first anal- 
ysis mode solution with constant flow angle (/?—) and lin- 
ear loss distributions, (iii) a second analysis mode solu- 
tion with a captured shock, arbitrarily placed at x = 0.3. 
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Figure 4: Pitch-averaged representation of a blade- 
to-blade normal shock and analytical comparison with 
throughflow for ß = 60° and Mi = 1.4: (a) Mach num- 
ber, (b) pressure ratio, (c) relative flow angle, (d) loss co- 
efficient, (e) absolute total pressure ratio, (f) isentropic ef- 
ficiency, (g) massflow error. 

The pitch-averaged solution is defined by the area 
averaged primitive variables. (For this flow configura- 
tion, area and mass averaging are the same.) The effect 
of a captured shock in analyis mode, shown as a light line 
in Figs. 4a-f, is identical to that of the blade-to-blade nor- 
mal shock. However, the ensuing discontinuity compares 
poorly with the smooth variation observed in the aver- 
aged solution, considering, for instance, Mach number 

and static pressure ratio, Figs. 4a and b. These same fig- 
ures also show the agreement between the design mode 
solution (bold dashed line) and the actual average (bold 
solid line). In the other analysis mode solution, the flow 
remains supersonic because the equations associated with 
ß = cst and imposed losses describe one-dimensional 
adiabatic flow at constant area, which evolves along the 
Fanno line. In the average and in the design mode solu- 
tion, deceleration to subsonic is enabled by two different 
mechanisms. In the latter, the flow angle does not remain 
constant inside the shock zone, Fig. 4c, the maximum de- 
flection amounting to 2.8°, while in the former there is 
a considerable overshoot in the loss coefficient to nearly 
twice the final value, Fig. 4d. 

Figures 4e and f show the total pressure ratio and ef- 
ficiency that would result if the shock occurred in a ro- 
tor with axial inflow. In analysis mode with a captured 
shock, both are exact upstream and downstream of the 
shock zone, but discontinuous, while with imposed losses 
and constant flow angle both are unrealistically low. The 
design mode, by contrast, agrees perfectly with the aver- 
aged solution in terms of pressure ratio, Fig. 4e, and gives 
an even better approximation of efficiency, Fig. 4f, be- 
cause the loss overshoot in the averaged solution causes 
a corresponding undershoot in efficiency. 

The primitive-variable-averaged 2D solution does 
not satisfy the ID conservation laws, Fig. 4g. A conser- 
vative average can, however, be defined (not shown here 
for clarity), and this would be practically indistinguish- 
able from the design mode solution, including the flow 
deflection throughout the shock zone. 

4.3   Captured Shocks in Analysis Mode 

Practically, there appears to be little latitude in control- 
ling captured shocks. Their structure is determined pri- 
marily by the streamwise flow angle distribution, some- 
what by the geometrical blade blockage, with minor in- 
fluence from the imposed losses and their streamwise dis- 
tribution. Flow angle and thickness distributions must 
conform to the actual ones found in the pitch-averaged 
solution because they fix the choking massflow. There- 
fore, no parameter is left to control the shock pattern, 
which has to be accepted as is and an attempt is made to 
exclude the associated losses from the imposed ones. 

5   Transonic Axial Compressor Re- 
sults 

5.1    Test Case Description 
The effect of the different shock capturing properties in 
design mode, in analysis mode and in hybrid mode will 
now be examined at the example of NASA Rotor 67 
(Strazisar et al.; 1989; Fottner; 1990). This is a typical 
transonic compressor rotor, with the design parameters 
listed in Table 1. 

This test case has been chosen in part because of the 
availability of numerical data in the form of eleven 3D 



Table 1: NASA Rotor 67 design parameters. 

Pressure ratio 1.63 
Efficiency 91 % 
Inlet tip Mach number 1.38 
Tip stagger angle 64deg 
Number of blades 22 
Aspect ratio 2.25 
Mean hub/tip radius ratio 0.427 

Navier-Stokes solutions covering the complete perfor- 
mance curve. Those computations had been performed 
with the same flow solver on a mesh of circa 550,000 
cells, Fig. 6a, including tip clearance and with a two- 
equation turbulence model. Five characteristic operating 
points were selected: near stall (NS), mid-range (MR), 
peak efficiency (PE), near choke (NC) and choked at a 
low pressure ratio (CH). 

Fig. 5 schematically shows the blade modelling pa- 
rameters. The flow path and leading and trailing edge ge- 
ometry are represented exactly in the throughflow mesh 
of 32 x 72 = 2304 cells, Fig. 6b. The mesh is uniform, 
with 32 x 32 cells in the blade passage. This mesh size 
has been determined in a mesh sensitivity study to guar- 
antee a sufficiently low level of numerical disspation. 

The spanwise profile of maximum blade thickness, 
rfmax. was obtained from the blade geometry. The loca- 
tion of dmax is at 60 % axial chord at the tip and 50 % 
at the hub, with a linear transition. The streamwise blade 
thickness distribution is quadratic (power function with 
exponent 2). 

5.2   Analysis of the Pitch-Averaged 3D Flow 

The pitch-averaged solution is defined by the mass aver- 
aged primitive variables. Figures 6c-f show the spanwise 
profiles of incidence angle, deviation angle, exit swirl 
and loss coefficient extracted from the pitch-averaged 

W6-profile (design mode) 

ß-profile (analysis and 
hybrid modes) 

We-distribution (design and hybrid modes) 

ß-distribution (analysis mode) 

d-and y -distributions 

Figure 5: Throughflow blade modelling parameters. 

Case ke7 (near Mall) 

Figure 7: Detail of the pitch-averaged calculated 3D ve- 
locity field at the blade tip: (a) near stall, (b) at peak effi- 
ciency. 

3D Navier-Stokes solutions for the five operating points. 
Because normal shocks are expected to be captured in 
analysis mode, the associated losses (the captured shock 
losses) were approximatively removed from the loss pro- 
files imposed in analysis calculations by subtracting the 
losses of a normal shock at the inlet Mach number, the 
latter being assumed to vary linearily from 1 at 40 % 
span (measured from the hub) to 1.4 at the casing. Near 
stall, a vortex forms at the LE tip, Fig. 7a (caution: the 
figure does not show the flow in the tip gap proper but 
the circumferentially averaged flow in the tip region; the 
blade contours are drawn to aid orientation.) The ensuing 
recirculation zone extends along the casing beyond the 
TE, causing considerable end-wall blockage. Corrections 
therefore had to be made to the swirl and loss profiles for 
this operating point near the casing (the bold straight line 
segments in Figs. 6e and f), smoothing out strong local 
variations to give profiles close to the mixed out ones one 
chord downstream. The LE tip vortex is negligible for the 
four other operating points, Fig. 7b; in particular, there is 
no backflow at the TE. The extracted profiles could there- 
fore be used directly. 

Figure 8 compares the streamwise distributions for 
/?, We and Vw at three spanwise positions (12 %, 52 % 
and 88 % span from the hub) with power functions for se- 
lected exponents (5, 2, 1.2, 1, -1.2, -2, -5). Four of the 
five selected operating points are shown: NS, PE, NC and 
CH. In the throughflow model, the same power function 
distribution applies to all spanwise locations. Figure 8 in- 
dicates that this is a good approximation in most cases. 
S-shaped distributions, such as the choked swirl distri- 
bution, Fig. 8h, and overshoots, such as in the choked 
flow angle distribution, Fig. 8d, cannot be represented 
by the current simple power function model. Based on 
these figures and past experience, a /?-exponent of 2 
was chosen for all operating points (analysis mode) and 
We -exponents of 2,1.75,1.5,1 and again 1 for the near 
stall, mid-range, peak efficiency, near choke and choked 
at low pressure ratio operating points, respectively (de- 
sign and hybrid modes). The loss distribution, within the 
reasonable bounds observed in Figs. 8i-k, is not a sen- 
sitive parameter and was therefore chosen linear for all 
cases (V1—exponent 1). 

An exception had to be made for the choked oper- 
ating point at low pressure ratio (CH). Contrary to the 
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Figure 6: Computational grids: (a) Meridional projection of the 3D Navier-Stokes mesh, (b) the Euler throughflow 
mesh. Spanwise profiles extracted from the pitch-averaged 3D solutions: (c) incidence angle with respect to the blade 
suction side, (d) deviation angle, (e) relative tangential velocity at the blade trailing edge, (f) loss coefficient. 

design mode, the analysis mode has a built-in choking 
mechanism. A linear loss distribution leads to losses in 
the forward part of the blade passage which, near the hub 
and at mid-span, are too high compared with the actual 
values, Fig. 81. With the ensuing diminished total pres- 
sure, the blade passage throat can pass only a reduced 
massflow; compared with the NC operating point, the 
choking massflow obtained with a linear loss distribution 
is underpredicted by 2 %. A consistent value is obtained 
with the power function exponent -2.5 suggested by Fig. 
81. The analysis of the pitch-averaged 3D flow field thus 
provides both qualitative and quantitative information on 
the streamwise distributions of flow angle or swirl, and 
losses. Although they have little impact on the down- 
stream flow, they are important for the flow field inside 
the blade passage and the choking massflow in analysis 
mode. 

In accordance with the analysis performed in section 
4, features of the pitch-averaged streamwise distributions 
of Fig. 8 can be associated with the various oblique and 
normal shocks in the blade-to-blade plane. As an exam- 
ple, Fig. 9 shows pressure and Mach contours at the same 
three spanwise positions. At 88 % span, Fig. 9a, expan- 
sion of the supersonic flow along the slightly cambered 

suction surface together with the deflection through the 
oblique bow shock cause significant overturning, Fig. 8d. 
This is undone by the oblique passage shock which em- 
anates from the suction side of the trailing edeg and is re- 
flected off the pressure surface. This reflected shock and 
another weak oblique shock originating from the trail- 
ing edge extend into the downstream region. Work input, 
Fig. 8h, is smooth and continuous. Losses rise steeply 
where shock strength is high (at and immediately down- 
stream of the leading edge) and where the percentage of 
axial chord covered by the circumferential projection of 
oblique shocks is small (the passage shock is of roughly 
the same strength as the bow shock — both have an up- 
stream Mach number of 1.45 and similar obliquity — but 
its projected length, between x « 0.7 and 1, is smaller 
than that of the bow shock, between x « 0 and 0.8). Simi- 
lar reasoning can be applied to the mid-span and hub sec- 
tions, Figs. 9b and c. Here, it is the normal or near-normal 
passage shock that accounts for most of the losses, Fig. 81, 
with only minimal losses upstream. 
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Figure 8: Streamwise distributions extracted from the pitch-averaged 3D solutions at three spanwise sections compared 
to power functions: top row = relative flow angle (/?), middle row = relative tangential velocity (W$), bottom row = 
loss coefficient (Vvot); outer left column = near stall (NS), inner left column = peak efficiency (PE), inner right column 
= near choke (NS), outer right column = choked (CH); in detail: (a) ß NS, (b) ß PE, (c) ß NC, (d) ß CH, (e) We NS, 
(f) We PE, (g) We NC, (h) Wt CH, (i) Vw NS, (j) Vw PE, (k) Vrot NC, (1) ^rot CH; triangles = near the casing (88 % 
span), circles = at mid-span (52 %), squares = near the hub (13 % span), solid lines = power functions with exponents 
5,2,1.2, 1,-1.2,-2,-5. 

5.3   Throughflow Calculation Strategy 

Each of the five selected operating points was calculated 
in each of the three throughflow modes as follows: 

In design mode, the imposed exit swirl fixes the work 
input (up to the effect of radial streamline displacement 
with varying back pressure). Because the flow remains 
axially subsonic, the design mode does not have a built-in 
choking mechanism. Variation of the exit pressure there- 
fore results in horizontal displacement of the operating 
points in the performance diagrams: the massflow adapts, 
at nearly constant pressure ratio and efficiency. 

Both analysis mode and hybrid mode do have a built- 

in choking mechanism: the fixed flow angle limits the ef- 
fective area available to the relative flow, expressed by 
the blockage factor 6eff, according to 

fceff = b cos ß (22) 

Even though in 3D the situation is complicated by AVDR 
variation for individual blade-to-blade sections, the same 
reasoning applies for the blade passage as a whole. In 
analysis mode, the CH and NC operating points were run 
to the correct pressure ratio. The three non-choked oper- 
ating points (PE, MR and NS) were then run to the cor- 
rect fraction of the choking massflow. The same proce- 



Figure 9: For the choked operating point (CH), pressure contours (a) near the casing, (b) at mid-span, (c) near the hub, 
and Mach contours (d) near the casing, (e) at mid-span, (f) near the hub. 

dure was followed in hybrid mode, except for NC, which 
was run to the correct fraction of choking massflow be- 
cause its choking massflow (i.e., that obtained with the 
NC profiles instead of the CH profiles, but with the same 
streamwise distributions) turned out to be higher than that 
ofCH. 

Figure 10 compares the resulting performance 
curves with those of the reference 3D Navier-Stokes 
calculations. 

Also shown are the measured performance curves. 
A discussion of possible reasons for the discrepancy be- 
tween the 3D calculation and the experimental data is 
beyond the scope of this paper. The reference for the 
throughflow calculations are the calculated 3D results, 
because this is from where the input profiles have been 
taken. 

Each curve has been normalized with respect to its 
own choking massflow. All lie within 2 % of the ex- 
perimental value. While the design and hybrid modes 
agree remarkably well with the reference 3D calcula- 
tion, the analysis mode overestimates both pressure ra- 
tio and efficiency of the non-choked operating points. 
This is explained by the presence of multiple shocks, to 
be discussed below, and the modified loss profiles. The 
shock pattern is insensitive to the imposed losses. Even 
though one might be tempted to conclude that the cap- 
tured shock losses have been overestimated when remov- 
ing them from the extracted ones, it should not be forgot- 
ten that the presence of multiple shocks has of course a 
profound impact on AVDR. The correct exit angle does 
therefore not guarantee the correct exit swirl and thus 
work input. 

5.4    Comparison with Pitch-Averaged 3D 
Flow Fields 

Figures 11-14 compare the flow fields obtained in analy- 
sis mode and in design mode with the pitch-averaged cal- 

culated 3D flow field through Mie\, Cp, ß and We- The 
hybrid mode is shown in Fig. 15. Figures 11-14 show in 
the left-hand column the analysis mode, in the central col- 
umn the pitch-averaged 3D solution and in the right-hand 
column the design mode. In all five figures, the sequence 
of rows, from top to bottom, is composed of the NS, PE, 
NC and CH operating points. 

A first overview suggests that, except for the flow an- 
gle, Fig. 13, design mode and analysis mode differ dra- 
matically inside the blade passage and that the design 
mode better approximates the pitch-averaged 3D flow 
field. 

In accordance with theory, the design mode does not 
capture shocks, because the axial Mach number remains 
subsonic. An exception is the CH operating point, for 
which a weak shock appears to be captured at the blade 
root at 2/3 chord, Figs. Ill and 121. Incidentally, this is 
also the location of the passage shock in 3D. Between the 
hub and mid-span, this passage shock is nearly axisym- 
metric and consequently appears as a near-discontinuity 
in the pitch-average, Figs. Ilk and 12k. 

The analysis mode, independently of the operating 
point, captures a normal shack at the blade leading edge, 
Figs. 11, 12 and 14. For all operating points except the 
NS one, this is followed by a second normal shock at 
or near the trailing edge. Going along the performance 
curve from stall to choke (the sequence of figures 11a, 
d, g, j), the reacceleration to supersonic flow and the 
strength and inboard extension of the second shock inten- 
sify. This process is associated with a downstream dis- 
placement of the second shock, which gradually moves 
off the blade, thereby allowing the required supersonic 
exit flow in the outboard region at choked operation, Fig. 
llj- 

Despite the differences inside the blade passage, the 
downstream flow fields in design and analysis mode are 
nearly the same, and in very good agreement with the ref- 
erence 3D solution. This observation holds unreservedly 
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Figure 10: NASA Rotor 67 performance curves: (a) absolute total pressure ratio, (b) isentropic efficiency; open cir- 
cles = experiment, open squares = 3D calculation, filled squares = design mode, filled triangles = analysis mode, filled 
diamonds = hybrid mode. 

for Mach number and Cp, for the NS and PE operating 
points. Near stall, the averaged 3D flow has a low veloc- 
ity/recirculation zone at the blade tip that gradually mixes 
out, Fig. lib, see also Fig. 7. It is caused by phenomena 
in the blade-to-blade plane and interaction with the tip 
leakage flow and does therefore not arise in the through- 
flow calculations, Figs. 11a and c. Near choke, distinc- 
tions begin to appear in the downstream field, in the form 
of additional expansion/acceleration in the lower 60 - 70 
% span, which is not observed in the averaged 3D solu- 
tion and more pronounced in analysis mode than in de- 
sign mode, Figs, llg-1 and 12g-l. 

Another interesting feature of the averaged 3D flow 
on which both throughflow solutions necessarily miss out 
is the effect of wake blockage and mixing, cf. Fig. 9d-f. 
This is most visible at the blade root, immediately down- 
stream of the trailing edge, from the hub to about 30 % 
span, Figs. 11 and 12. Here, the throughflow isoline pat- 
terns of both Mve\ and Cp are 'centered' about the trail- 
ing edge, while in the averaged 3D solution the pattern 
is shifted some way downstream. This also has conse- 
quences on the flow angle, Fig. 13. The representation 
of wake blockage in the throughflow might therefore be 
desirable because it would allow a more realistic through- 
flow representation. On the other hand, it would add an 
additional modelling parameter to be tuned or correlated. 

The fact that the smooth compression in the forward 
part of the blade passage, Figs. llb,e and 12b,e, is so well 
represented in the design solution, Figs. llc,f and 12c,f, is 
due to the realistic choice of streamwise We —distribution 
that could be made for these cases, Figs. 8e and f. For dis- 
tributions which cannot be well represented by the sim- 
ple power functions, e.g., those near choke (NC), Figs. 

8g and llh, 12h, agreement is less good, Figs. Hi, 12i. 
S-shaped Wa—distributions prevail in this range, with 
steeper gradients and therefore isoline clustering in the 
middle of the blade, while the best-compromise linear 
distribution of the throughflow produces uniform decel- 
eration. If this kind of information is available, it might 
be worth wile to allow more detailed throughflow mod- 
elling via independent control of the hub, mid-span and 
tip regions, and via two-piece power functions. 

However, the error made by simplified streamwise 
We— distributions in design mode is much smaller than 
that caused by the captured shocks in analysis mode, and 
its consequences on the downstream flow are presumably 
negligible. The latter is not true of the analysis mode, 
where the flow angle field is visibly distorted downstream 
of the second, trailing edge shock, Figs. 13d,g j. The best 
agreement, for all operating points, is given by the hybrid 
mode, Figs. 15b,e,h,k. Conformity with 3D is even par- 
ticularily good for choked operation at low pressure ratio, 
Figs. 13k and 15k, where the unturning at about 3/4 chord 
is well reproduced, also, in slightly milder form, in design 
mode, Fig. 131. This effect is captured without any tuning 
of the We —distribution, which is linear for the NC and 
CH operating points. In the analysis solution it is neces- 
sarily absent, Fig. 13j. Inside the blade passage, design 
mode and hybrid mode yield correct swirl fields, Figs. 14 
and 15c,f,i,l, while the analysis mode deviates strongly 
where shocks are captured, from about 50 % span to the 
casing. 

To avoid arbitrary modification of the extracted pro- 
files, it was left to the Euler throughflow mesh to filter 
out end-wall boundary layer effects. The high flow an- 
gles near the stationary casing extend far enough inward 
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to be partially visible on the throughflow mesh, however. 
As a consequence, both the analysis and the hybrid solu- 
tions have a zone of low and even negative turning at the 
casing, Fig. 13, left column, and Fig. 15, central column. 
Owing to diffusion on the Euler mesh, the low-turning 
zone spreads radially inwards downstream of the blade 
row. 

6    Conclusions 

The shock capturing properties of the Euler throughflow 
equations have been determined through analysis of the 
Rankine-Hugoniot relations. The design mode captures 
axisymmetric shocks, the analysis mode quasi-normal 
shocks. 

The shock capturing properties were found to de- 
pend only on the streamwise distributed variable, not on 
the variable for which a trailing edge profile is imposed. 
This enabled the construction of a novel mode, termed the 
hybrid mode, which combines the imposed trailing edge 
flow angle of the analysis mode with the shock capturing 
properties of the design mode. 

For an isolated 2D blade-to-blade section, analysis 
mode and design mode have been analytically compared 
with the pitch-averaged representation of a normal shock 
at high flow angle, showing the deviation of the analysis 
mode from the averaged solution. 

3D Navier-Stokes solutions of a transonic axial 
compressor rotor for different operating points have been 
analyzed in detail with regard to the profiles and dis- 
tributions required as input to the throughflow model. 
Throughflow calculations in the three modes were then 
performed with the extracted swirl (design mode) or flow 
angle (analysis and hybrid modes) and loss profiles. It is 
concluded that 

(1) the analysis mode captures a normal shock at the 
leading edge and, depending on the operating point, a 
second normal shock near the trailing edge. 

(2) As a consequence of this, the blade passage flow 
field in the upper half-span is not correctly represented in 
analysis mode. 

(3) The smooth, continuous deceleration in the pitch- 
averaged 3D solution is correctly represented by the de- 
sign mode and by the hybrid mode. 

(4) Despite the erroneous solution inside the blade 
passage, the downstream flow field in analysis mode is 
largely correct. 

(5) Design mode and hybrid mode converge two to 
four times faster than the analysis mode, for transonic 
flows with captured shocks. 
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Figure 11: NASA Rotor 67, isolines of relative Mach number (Mrei, increment 0.05): left column = analysis mode, 
central column = pitch-averaged 3D solution, right column = design mode; first row from top = near stall (NS), second 
row = peak efficiency (PE), third row = near choke (NC), fourth row = choked (CH); in detail: (a) NS analysis, (b) 
NS 3D, (c) NS design, (d) PE analysis, (e) PE 3D, (f) PE design, (g) NC analysis, (h) NC 3D, (i) NC design, (j) CH 
analysis, (k) CH 3D, (1) CH design. 
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Figure 13: NASA Rotor 67, isolines of relative flow angle (/? in deg, increment 2.5 deg): left column = analysis mode, 
central column = pitch-averaged 3D solution, right column = design mode; first row from top = near stall (NS), second 
row = peak efficiency (PE), third row = near choke (NC), fourth row = choked (CH); in detail: (a) NS analysis, (b) 
NS 3D, (c) NS design, (d) PE analysis, (e) PE 3D, (f) PE design, (g) NC analysis, (h) NC 3D, (i) NC design, (j) CH 
analysis, (k) CH 3D, (1) CH design. 
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Figure 15: NASA Rotor 67, hybrid mode: left column = relative Mach number (Mre\, increment 0.05), central column 
= relative flow angle (/? in deg, increment 2.5 deg), right column = relative tangential velocity (We in m/s, increment 
20 m/s); first row from top = near stall (NS), second row = peak efficiency (PE), third row = near choke (NC), fourth 
row = choked (CH); in detail: (a) NS MTeU (b) NS ß, (c) NS We, (d) PE MieU (e) PE ß, (f) PE We, (g) NC Mrei, (h) 
NC ß, (i) NC We,Q) CH Mrei, (k) CH/?, (1) CH We. 
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